» » Энергетика как большая система. Что такое большая энергетика. Что такое энергетика человека, как её повысить Что такое большая энергетика

Энергетика как большая система. Что такое большая энергетика. Что такое энергетика человека, как её повысить Что такое большая энергетика

МАЛАЯ ЭНЕРГЕТИКА РОССИИ
КЛАССИФИКАЦИЯ, ЗАДАЧИ, ПРИМЕНЕНИЕ

Алексей Михайлов , д.т.н., профессор
Александр Агафонов , д.т.н., профессор
Виктор Сайданов , к.т.н., доцент
Военный инженерно-технический университет, г. Санкт-Петербург

Малая энергетика позволяет потребителю не зависеть от централизованного энергоснабжения и его состояния, использовать оптимальные для данных условий источники производства энергии. Закономерно, что такие технологии находят себе место и в промышленно развитых, и в развивающихся районах с различным климатом.
До настоящего времени публикации, посвященные малой энергетике, появлялись в нашем журнале эпизодически. Теперь редакция планирует сделать эту тему одной из ключевых и регулярно представлять ее, в том числе и в рамках специальной рубрики. Сегодня о задачах российской малой энергетики, ее роли в обеспечении энергетической безопасности страны, возможностях в повышении надежности энергообеспечения – в материале специалистов Военного инженерно-технического университета.

Рис. 1. Классификация энергоустановок малой энергетики ДВС – поршневой двигатель внутреннего сгорания; ГТУ – газотурбинная установка; ГЭС – гидроэлектростанция.

Общепринятого термина «малая энергетика» в настоящее время нет. В электроэнергетике наиболее часто к малым электростанциям принято относить электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. Обычно такие электростанции разделяют на три подкласса:

  • микроэлектростанции мощностью до 100 кВт;
  • миниэлектростанции мощностью от 100 кВт до 1 МВт;
  • малые электростанции мощностью более 1 МВт.
Наряду с термином «малая энергетика» применяются понятия «локальная энергетика», «распределенная энергетика», «автономная энергетика» и «распределенная генерация энергии (РГЭ)». Последнее понятие определяют как производство энергии на уровне распределительной сети или на стороне потребителя, включенного в эту сеть. В дальнейшем в публикации будет использоваться термин «малая энергетика», как наиболее четкий и позволяющий рассматривать различные сферы применения.
Малая электроэнергетика России сегодня – это примерно 49000 электростанций (98,6% от их общего числа) общей мощностью17 млн кВт (8% от всей установленной мощности электростанций России), работающих как в энергосистемах, так и автономно. Общая годовая выработка электроэнергии на этих электростанциях достигает 5% от выработки всех электростанций страны. Если учесть приведенные данные, то средняя мощность малых электростанций составляет примерно 340 кВт. Энергетическая безопасность и малая энергетика

В настоящее время значимость малой энергетики увеличивается в связи с изменяющейся в стране социально-экономической обстановкой. Большую роль играет малая энергетика в обеспечении надежности электроснабжения и энергетической безопасности (ЭБ) потребителей электроэнергии, которая является важной компонентой национальной безопасности страны и трактуется как состояние защищенности граждан, общества, государства, экономики от обусловленных внутренними и внешними факторами угроз дефицита всех видов энергии и энергетических ресурсов. По ситуативному признаку при анализе ЭБ выделяют три основных варианта, соответствующих нормальным условиям функционирования, критическим ситуациям и чрезвычайным ситуациям.
ЭБ в условиях нормального функционирования связывается с необходимостью обеспечения в полном объеме обоснованных потребностей в энергетических ресурсах. В экстремальных условиях (то есть в критических и чрезвычайных ситуациях) ЭБ требует гарантированного обеспечения минимально необходимого объема потребностей в энергии и энергоресурсах.
Непосредственно на ЭБ нашей страны сказываются острый дефицит инвестиционных ресурсов, недофинансирование капиталовложений в топливно-энергетический комплекс и многие другие угрозы экономического характера. В связи со значительной выработкой технического ресурса энергооборудованием всё большее влияние на ЭБ оказывают аварии, взрывы, пожары техногенного происхождения, а также стихийные бедствия.
События последних лет показали существенную неустойчивость в обеспечении электроэнергией и теплом потребителей различных категорий от централизованных энергетических систем. Одна из причин этого – состояние «отложенного кризиса» в энергетике страны, обусловленное быстрым старением основного оборудования, отсутствием необходимых инвестиций для обновления и строительства новых энергетических объектов и их ремонта, сложности со снабжением топливом.
Другой причиной потери энергоснабжения являются природные (прежде всего климатические) катаклизмы, приводящие в ряде случаев к тяжелым последствиям для значительных территорий и населенных пунктов. Весьма уязвимыми являются централизованные системы энергоснабжения и с военной точки зрения. Например, с помощью сравнительно недорогих боевых блоков, разбрасывающих проводящие нити или графитовую пыль, НАТО удалось всего за двое суток вывести из строя до 70% электроэнергетических систем Югославии.
Кроме того, стратеги ядерных держав в качестве одного из вариантов начала войны рассматривают «ослепляющий удар»: взрыв над территорией противника на большой высоте ядерного бое­припаса, в том числе и специального, с усиленным выходом электромагнитных излучений. Электромагнитный импульс (ЭМИ) высотного взрыва охватывает огромные территории (с радиусом в несколько тысяч километров) и может выводить из строя не только системы управления, связи, но и системы электроснабжения, прежде всего за счет наведения перенапряжений на воздушных и кабельных ЛЭП. Характерно, что одним из стандартов МЭК рекомендуется проверка устойчивости энергетических систем к воздействию ЭМИ высотного ядерного взрыва. Насколько известно, в России работа в этом направлении практически не ведется.
Уязвимыми являются централизованные системы энергообеспечения и для террористических актов.
Опасность потери энергоснабжения вследствие указанных выше причин весьма значительна. Устранить ее средствами централизованного энергоснабжения по тем же причинам затруднительно. Однако задача повышения ЭБ ответственных объектов может быть решена средствами малой энергетики.
Государство должно поощрять повышение энергетической безопасности объектов за счет строительства собственных электростанций малой мощности, например, снижением налогов или их отменой на определенное время с момента ввода электростанции в строй (опыт такого поощрения есть за рубежом).

Области применения малой энергетики

Несмотря на относительно скромную долю малой энергетики в общем энергобалансе страны по сравнению с большой энергетикой, которой уделяется основное внимание нашей науки и промышленности, значимость малой энергетики в жизни страны трудно переоценить.
Во-первых, по разным оценкам, от 60 до 70% территории России не охвачены централизованным электроснабжением. На этой огромной территории проживает более 20 млн человек и жизнедеятельность людей обеспечивается главным образом средствами малой энергетики.
Во-вторых, обширной сферой применения средств малой энергетики является резервное (иногда его называют аварийным) электроснабжение потребителей, требующих повышенной надежности и не допускающих перерывов в подаче энергии при авариях в зонах централизованного электроснабжения. В-третьих, малая энергетика может быть конкурентоспособна в тех зонах, где большая энергетика до сего времени рассматривалась как безальтернативная. Например, на промышленных предприятиях, когда постоянное повышение платы за подключение к централизованным сетям или за увеличение мощности подталкивает потребителей к строительству собственных источников энергии.
На рис. 1 представлена классификация различных по характеристикам энергетических установок (ЭУ) малой энергетики, которые в настоящее время широко распространены на энергетическом рынке России.
Рассмотрим возможности и перспективы использования ЭУ различного вида в указанных выше основных сферах их применения, а также современное состояние малой энергетики, её характерные проблемы и возможности в обеспечении надежности электроснабжения и ЭБ.

Зоны децентрализованного энергоснабжения

В зонах децентрализованного энергоснабжения роль малой энергетики в обеспечении ЭБ является определяющей. Рабочие (постояннодействующие) электростанции малой мощности обеспечивают постоянное электроснабжение объектов, размещенных в регионах, где отсутствуют централизованные системы электроснабжения, или удаленных от этих систем на такое расстояние, что строительство линий электропередачи экономически менее эффективно, чем создание рабочей электростанции. Рабочие электростанции должны обеспечивать потребности объектов в энергии в полном объеме в режиме нормального функционирования и в минимально гарантированном объеме в критических и чрезвычайных ситуациях.
Для таких объектов все аспекты обеспечения ЭБ (наличие на рынке, цена, качество, способ транспортировки, создание запасов топлива; технико-экономические характеристики, ресурс, состояние энергетического оборудования, возможность его замены и модернизации и т.п.) имеют значение не меньшее, чем для объектов большой энергетики. Более того, поскольку зоны децентрализованного энергоснабжения охватывают главным образом северную и северо-восточную часть территории нашей страны с суровым климатом, тяжелыми и дорогими условиями доставки грузов, удаленностью от центров снабжения, а маневрирование ресурсами и мощностью на малых объектах затруднительно, проблемы ЭБ для таких объектов становятся особенно острыми.
Рабочие электростанции являются, как правило, стационарными и прежде всего должны по возможности удовлетворять требованиям большого срока службы и малой удельной стоимости вырабатываемой электроэнергии. Однако рабочие электростанции малой энергетики по этим показателям, конечно, уступают крупным электростанциям централизованных систем электроснабжения.

Дизельные электростанции

Сегодня в малой электроэнергетике преобладающими являются дизельные электростанции (ДЭС). Из 49 тысяч малых электростанций России примерно 47 тысяч являются именно дизельными. Такое широкое применение ДЭС определяется рядом их важных их преимуществ перед другими типами электростанций:

  • высокий КПД (до 0,35–0,4) и, следовательно, малый удельный расход топлива (240–260 г/кВт·ч);
  • быстрота пуска (единицы-десятки секунд), полная автоматизация всех технологических процессов, возможность длительной работы без технического обслуживания (до 250 часов и более);
  • малый удельный расход воды (или воздуха) для охлаждения двигателей;
  • компактность, простота вспомогательных систем и технологического процесса, позволяющие обходиться минимальным количеством обслуживающего персонала;
  • малая потребность в строительных объемах (1,5–2 м3/кВт), быстрота строительства зданий станции и монтажа оборудования (степень заводской готовности 0,8–0,85);
  • возможность блочно-модульного исполнения электростанций, сводящая к минимуму строительные работы на месте применения.
Главными недостатками ДЭС являются высокая стоимость топлива и ограниченный по сравнению с электростанциями централизованных систем срок службы (ресурс).
Российская промышленность предлагает широкий выбор ДЭУ во всем необходимом диапазоне мощностей и исполнений (табл. 1). Однако следует отметить, что наши отечественные установки существенно уступают лучшим зарубежным образцам этой техники прежде всего по массогабаритным показателям, характеристикам шумности и экологическим показателям. Кроме того, например, ДЭУ на базе дизельного двигателя фирмы «Waukesha» P9390G при номинальной мощности 800 кВт имеет удельный расход топлива 0,215 кг/кВт ч и ресурс до капитального ремонта 180000 ч.
Данные табл. 1 свидетельствуют о том, что все ДЭС мощностного ряда от 315 до 2500 кВт имеют относительно высокие значения моторесурса (32000–100000 часов) и высокие показатели топливной экономичности (значения коэффициента использования топлива 0,33–0,4). Стоимость электроэнергии, вырабатываемой ДЭС, составляет 5–7,5 руб./кВт·ч, а стоимость 1 кВт установленной мощности – порядка 5–6 тыс. руб. В стоимости электроэнергии доля топливной составляющей (для работы на дизельном топливе) доходит до 80–85%. Дизельные электротепловые станции

Большое распространение получают рабочие дизельные электротепловые станции (ДЭТС), обеспечивающие комбинированную выработку электрической и тепловой энергии за счет комплексной утилизации тепловых потерь. На таких электротепловых станциях в выхлопной тракт дизеля включаются пассивные или активные котлы-утилизаторы, в которых тепло горячих газов передается воде системы теплоснабжения объекта. В тепловую схему ДЭТС могут включаться также тепловые насосы для повышения температурного уровня охлаждающей дизель воды до уровня, на котором возможно ее использование в системе теплоснабжения. Проведенные в Военном инженерно-техническом университете исследования показали, что применение ДЭТС особенно эффективно для небольших объектов с потребляемой электрической мощностью до нескольких тысяч киловатт и относительно ограниченным теплопотреблением при соотношении между тепловой и электрической нагрузкой от 1,0 до 4,0. Коэффициент использования топлива при раздельном получении электроэнергии от ДЭС и тепла от котельной на таких объектах находится в пределах 0,45–0,65. Применение ДЭТС увеличивает этот коэффициент до 0,8–0,85.

Газодизельные и газопоршневые электростанции

В последнее время всё большее внимание как во всем мире, так и в нашей стране уделяется газодизельным (ГДЭС) и газопоршневым (ГПЭС) электростанциям, использующим в качестве топлива природный газ. При современных отпускных ценах на дизельное топливо и природный газ топливная составляющая стоимости электроэнергии для газодизельных электростанций в несколько раз меньше, чем у обычных ДЭС. Наряду с высокой экономичностью ГДЭС и ГПЭС обладают хорошими экологическими характеристиками, поскольку состав выхлопных газов у них отвечает самым строгим мировым экологическим стандартам. При использовании газа значительно увеличивается и ресурс собственно дизельного агрегата.
Применение ГДЭС и ГПЭС целесообразно в зонах, имеющих систему газоснабжения. В этих условиях по стоимости электроэнергии они могут конкурировать с системами централизованного электроснабжения, использующими мощные традиционные электростанции, а по срокам окупаемости капиталовложений существенно опережать их. В зонах без систем газоснабжения возможно применение ГДЭС и ГПЭС, использующих привозной сжиженный природный газ. Однако экономическая сторона этого варианта их применения требует дополнительного анализа.
К сожалению, ГДЭС и ГПЭС еще не нашли в нашей стране широкого применения, хотя за рубежом они используются уже достаточно широко. Характеристики выпускаемых в нашей стране ЭУ с поршневыми двигателями, работающими на газе, приведены в табл. 2, а комбинированных ЭУ с системами комплексной утилизации тепла (назовем их мини-ТЭЦ) – в табл. 3.
Анализ данных табл. 2 свидетельствует о том, что в настоящее время в России налажено серийное производство электростанций мощностного ряда от 100 до 2500 кВт на базе ПДВС, работающих по газовому и газодизельному циклам. При этом все электростанции, за исключением 100 и 200 кВт, имеют относительно высокие показатели по ресурсу и топливной экономичности. Стоимость электроэнергии, вырабатываемой такими станциями, снижается за счет топливной составляющей до 0,5–1 руб./кВ т ч, а стоимость установленной мощности повышается примерно в 1,5 раза по сравнению с ДЭС.

Эффективность мини-ТЭЦ достаточно высока. Так, для мини-ТЭЦ с электрической мощностью 100 кВт и тепловой мощностью 120 кВт себестоимость электрической энергии составляет 6 руб./кВт·ч, а полной энергии (электрической и тепловой) – 2,5 руб./кВт·ч. Срок окупаемости мини-ТЭЦ составляет 2,2 года. Для сравнения: мини-ТЭЦ на базе газопоршневого двигателя фирмы «Deutz» TCG2016V12 при номинальной электрической мощности 580 кВт и тепловой 556 кВт имеет удельный расход газа с теплотворностью 33520 кДж/нм3 – 0,26 нм3/кВт ч, коэффициент использования топлива 0,8 и ресурс до капитального ремонта 64000 ч.
В среднем стоимость энергии для мини-ТЭЦ, работающих на дизельном топливе, составляет 3–3,5 руб./кВт·ч, а на газовом топливе – 0,4–0,6 руб./кВт·ч. Стоимость установленной мощности для таких станций порядка 15–20 тыс. руб./кВт.

Газотурбинные электроустановки

Пока еще относительно скромное применение в малой энергетике находят газотурбинные электроустановки (ГТУ), которые обладают исключительно высокими массогабаритными показателями даже по сравнению с ДЭУ кратковременного использования. Их удельная массовая мощность составляет 0,11–0,14 кВт/кг, в то время как для ДЭУ этот показатель лежит в пределах 0,03–0,05 кВт/кг. Однако эти установки имеют по сравнению с ДЭУ меньший КПД (порядка 0,25–0,29), увеличенный расход топлива, требуют большого количества воздуха для охлаждения, обладают высокой шумностью. Поэтому ГТУ используются главным образом на передвижных резервных и автономных электростанциях.
К сожалению, отечественные ГТУ обладают в настоящее время существенно худшими показателями по сравнению с зарубежными. Характеристики некоторых видов ГТУ, выпускаемых в нашей стране, приведены в табл. 4, а ГТУ с комплексной утилизацией тепла – в табл. 5.

Прежде чем начать рассмотрение вопросов электроэнергетики необходимо понять, а что же такое энергетика вообще, какие она решает проблемы, какую роль в жизни человека она играет?

Энергетика это область деятельности человека, которая включает в себя получение (добычу), переработку (преобразование), транспортировку (передачу), хранение (кроме электрической энергии), распределение и использование (потребление) энергоресурсов и энергоносителей всех видов. Энергетика обладает развитыми, глубокими, внутренними и внешними связями. Ее развитие неотделимо от всех сторон деятельности человека. Такие сложные структуры с разнообразными внешними и внутренними связями рассматриваются как большие системы.

В определении большой системы энергетики (БСЭ) содержатся условия разделения большой системы на подсистемы – иерархичность ее структуры, развитости связей между подсистемами, единства задач и наличия самостоятельных целей у каждой подсистемы, подчиненности частных целей общей. К таким подсистемам относятся топливная энергетика, ядерная энергетика, гидроэнергетика, теплоэнергетика, электроэнергетика и другие подсистемы. Особое место в этом ряду занимает электроэнергетика и не только потому, что это предмет нашего изучения, но главным образом и потому, что электроэнергия – это особый вид энергии, обладающей специфичными свойствами, на которых следует остановиться более подробно.

1.2. Электроэнергия – особый вид энергии

К специфичным свойствам электроэнергии необходимо отнести:

– возможность получения её из других (практически из любых) видов энергии (из механической, тепловой, химической, солнечной и других);

– возможность преобразования ее в другие виды энергии (в механическую, тепловую, химическую, световую, в другие виды энергии);

– возможность преобразования ее в электрическую же энергию любых требуемых параметров (например, по напряжению от микровольт до сотен и даже тысяч киловольт - "Самая высоковольтная линия трехфазного переменного тока длиной 1610 км проложена в России и Казахстане и передает ток с напряжением 1200 (1150) кВ" );

– возможность передачи на значительные (тысячи километров) расстояния;

– высокую степень автоматизации производства, преобразования, передачи, распределения и потребления;

– невозможность (пока) хранения в больших количествах длительное время: процесс производства и потребления электрической энергии – это одномоментный акт;

– относительную экологическую чистоту.

Такие свойства электроэнергии обусловили ее широкое применение в промышленности, на транспорте, в быту, практически в любой сфере деятельности человека – это наиболее распространенный потребляемый вид энергии.

1.3. Потребление электрической энергии. Графики нагрузок потребителей

В процессе потребления электрической энергии участвует большое число разнообразных потребителей. Потребление энергии каждым из них в течение суток и года неравномерно. Оно может быть продолжительным и кратковременным, периодическим, регулярным или случайным, зависит от рабочих, выходных и праздничных дней, от работы предприятий в одну, две или три смены, от продолжительности светлой части суток, температурой воздуха и т.д.

Можно выделить следующие основные группы потребителей электрической энергии: – промышленные предприятия; – строительство; – электрифицированный транспорт; – сельское хозяйство; – бытовые потребители и сфера обслуживания городов и рабочих поселков; – собственные нужды электростанций и др.. Приемниками электроэнергии могут быть асинхронные электродвигатели, электрические печи, электротермические, электролизные и сварочные установки, осветительные и бытовые приборы, кондиционные и холодильные установки, радио- и телеустановки, медицинские и другие установки специального назначения. Кроме того, имеется технологический расход электроэнергии, связанный с ее передачей и распределением в электрических сетях.

Рис. 1.1. Суточные графики нагрузки

Режим потребления электроэнергии может быть представлен графиками нагрузок . Особое место среди них занимает суточные графики нагрузки, которые представляет собой непрерывное графическое изображение режима потребления электроэнергии потребителем в течение суток (рис. 1.1, а ). Часто бывает удобнее использовать ступенчато-аппроксимированные графики нагрузки (рис. 1.1, б ). Они и получили наибольшее применение.

Каждая электроустановка имеет характерный для нее график нагрузки. В качестве примера на рис. 1.2 приведены суточные графики: коммунальные потребители города с преимущественно осветительной нагрузкой (рис. 1.2, а); предприятия легкой промышленности с работой в две смены (рис. 1.2, б); нефтеперерабатывающего завода с работой в три смены (рис. 1.2, в).

Графики электрических нагрузок предприятий различных отраслей промышленности, городов, рабочих поселков позволяют прогнозировать ожидаемые максимальные нагрузки, режим и размеры потребления электроэнергии, обоснованно проектировать развитие системы.

В связи с непрерывностью процесса производства и потребления электроэнергии важно знать, сколько электроэнергии необходимо вырабатывать в каждый конкретный момент времени, определить диспетчерский график выработки электроэнергии каждой электростанцией. Для удобства составления диспетчерских графиков выработки электроэнергии суточные графики потребления электроэнергии делят на три части (рис.1.1, а). Нижнюю часть, где Р < Р ноч. min , называют базовой. Здесь наблюдается непрерывное потребление электроэнергии в течение суток. Среднюю часть, где Р ноч. min < Р < Р дн. min , называют полупиковой. Здесь происходит нарастание нагрузки в утренние часы и снижение в вечерние. Верхнюю часть, где Р > Р дн. min , называют пиковой. Здесь в дневные часы нагрузка постоянно меняется и достигает своего максимального значения.

1.4. Производство электрической энергии. Участие электростанций в выработке электроэнергии

В настоящее время в нашей стране, как и во всем мире, большая часть электроэнергии производится на мощных электростанциях, на которых какой-либо другой вид энергии преобразуется в электрическую. В зависимости от вида энергии, которая преобразуется в электрическую, различают три основных типа электростанций: тепловые (ТЭС), гидравлические (ГЭС) и атомные электростанции (АЭС).

На тепловых электростанциях первичным источником энергии служит органическое топливо: уголь, газ, мазут, горючие сланцы. Среди тепловых электростанций в первую очередь следует выделить конденсационные электростанции (КЭС). Это, как правило, мощные электростанции, располагающиеся вблизи добычи низкокалорийного топлива. Они несут значительную долю в покрытии нагрузки энергосистемы. Коэффициент полезного действия КЭС составляет 30…40%. Низкий КПД объясняется тем, что большая часть энергии теряется вместе с горячим отработавшим паром. Специальные тепловые электростанции, так называемые теплоэлектроцентрали (ТЭЦ), позволяют значительную часть энергии отработавшего пара использовать для отопления и технологических процессов в промышленных предприятиях, а также для бытовых нужд (отопление, горячее водоснабжение). В результате КПД ТЭЦ достигает 60…70%. В настоящее время в нашей стране ТЭЦ дают около 40% всей производимой электроэнергии. Особенности технологического процесса на этих электростанциях, где используются паротурбинные установки (ПТУ), предполагают стабильный режим работы без резких и глубоких изменений нагрузки, работу в базовой части графика нагрузки.

В последние годы на ТЭС нашли применение и все большее распространение газотурбинные установки (ГТУ), в которых газообразное или жидкое топливо при сгорании создаёт горячие выхлопные газы, раскручивающие турбину. Преимущество ТЭС с ГТУ в том, что они не требуют питательной воды и, как следствие, целого комплекса сопутствующих устройств. Кроме того, ГТУ – очень мобильны. На их пуск и останов требуется несколько минут (несколько часов для ПТУ), они допускают глубокое регулирование вырабатываемой мощности и поэтому могут быть использованы в полупиковой части графика нагрузки. Недостатком ГТУ является отсутствие замкнутого цикл теплоносителя, при котором с отработавшими газами выбрасывается значительное количество тепловой энергии. При этом КПД ГТУ составляет 25…30%. Однако установка на выхлопе ГТУ котла-утилизатора может повысить КПД до 70…80%.

На гидроэлектростанциях энергия движущейся воды в гидротурбине превращается в механическую, а затем в генераторе – в электрическую. Мощность станции зависит от создаваемой плотиной разности уровней воды (напора) и от массы воды, проходящей через турбины в секунду (расхода воды). Гидроэлектростанции дают более 15% всей вырабатываемой в нашей стране электроэнергии. Положительной особенностью ГЭС является очень высокая мобильность (выше, чем ГТУ). Это объясняется тем, что гидротурбина работает при температуре окружающей среде, не требует затрат времени на разогрев. Следовательно, ГЭС могут быть использованы в любой части графика нагрузки, в том числе и в пиковой.

Особое место среди ГЭС занимают гидроаккумулирующие электростанции (ГАЭС). Назначение ГАЭС заключается в выравнивании суточного графика нагрузки потребителей и повышении экономичности ТЭС и АЭС. В часы минимальной нагрузки агрегаты ГАЭС работают в насосном режиме, перекачивая воду из нижнего водохранилища в верхнее и увеличивая тем самым нагрузку ТЭС и АЭС; в часы максимальной нагрузки они работают в турбинном режиме, сбрасывая воду из верхнего водохранилища и разгружая ТЭС и АЭС от кратковременной пиковой нагрузки. Экономичность работы системы в целом при этом повышается.

На атомных электростанциях технология производства электрической энергии почти такая же, как и на КЭС. Разница состоит в том, что на АЭС в качестве первичного источника энергии используется ядерное топливо. Это накладывает дополнительные требования безопасности. После Чернобыльской катастрофы эти электростанции должны строиться не ближе 30 км от населенных пунктов. Режим работы должен быть как на КЭС – стабильный, без глубокого регулирования вырабатываемой мощности.

Нагрузка всех потребителей должна быть распределена между всеми электростанциями, суммарная установленная мощность которых несколько превышает наибольший максимум нагрузки. Покрытие базовой части суточного графика возлагают: а) на АЭС, регулирование мощности которых затруднительно; б) на ТЭЦ, максимальная экономичность которых имеет место, когда электрическая мощность соответствует тепловому потреблению (пропуск пара в ступени низкого давления турбин в конденсаторы должен быть минимальным); в) на ГЭС в размере, соответствующем минимальному пропуску воды, необходимому по санитарным требованиям и условиям судоходства. Во время паводка участие ГЭС в покрытии базовой части графика системы может быть увеличено с тем, чтобы после заполнения водохранилищ до расчетных отметок не сбрасывать бесполезно избыток воды через водосливные плотины. Покрытие пиковой части графика возлагают на ГЭС, ГАЭС и ГТУ, агрегаты которых допускают частые включения и отключения, быстрое изменение нагрузки. Остальная часть графика, частично выровненная нагрузкой ГАЭС при работе их в насосном режиме, может быть покрыта КЭС, работа которых наиболее экономична при равномерной нагрузке (рис. 1.3) .

Кроме рассмотренных существует значительное число других типов электростанций: солнечные, ветровые, геотермальные, волновые, приливные и другие. Они могут использовать возобновляемые и альтернативные источники энергии. Во всем современном мире этим электростанциям уделяется значительное внимание. Они могут решить некоторые проблемы, встающих перед человечеством: энергетическую (запасы органического топлива ограничены), экологическую (снижение выбросов вредных веществ при производстве электроэнергии). Однако, это очень затратные технологии получения электроэнергии потому, что альтернативные источники энергии это, как правило, низкопотенциальные источники. Это обстоятельство затрудняет их использование. В нашей стране на долю альтернативной энергетики приходится менее 0,1% выработки электроэнергии .

На рис. 1.4 показано участие различных типов электростанций в производстве электроэнергии .

Рис. 1.4.

1.5. Электроэнергетическая система

Развитие электроэнергетики начиналось во второй половине XIX века со строительства небольших электростанций вблизи и для конкретных потребителей. Это была в основном осветительная нагрузка: Зимний дворец в Санкт-Петербурге, Кремль в Москве и т.п. Электроснабжение осуществлялось главным образом на постоянном токе. Однако изобретение в 1876 г. Яблочковым П.Н. трансформатора определило дальнейшее развитие энергетики на переменном токе. Возможность изменения параметров напряжения трансформаторами позволило с одной стороны согласовывать параметры генераторов и объединять их на параллельную работу, а с другой стороны – повышать напряжение и передавать энергию на значительные расстояния. С появлением в 1889 г. трехфазного асинхронного электродвигателя, разработанного Доливо-Добовольским М.О., развитие электротехники и электроэнергетики получили мощный толчок.

Широкое использование простых и надежных асинхронных электродвигателей на промышленных предприятиях привело к значительному росту электрической мощности потребителей, а вслед за ними – мощности электростанций. В 1914 году наибольшая мощность турбогенераторов составляла 10 МВт , самая крупная ГЭС имела мощность 1,35 МВт , самая крупная тепловая электростанция имела мощность 58 МВт , суммарная мощность всех электростанций России - 1,14 ГВт . Все электростанции работали изолированно, случаи параллельной работы были исключительными. Наивысшее напряжение, освоенное до первой мировой войны, составляло 70 кВ .

22 декабря 1920 года на 8 съезде Советов был принят план ГОЭЛРО, рассчитанный на 10-15 лет и предусматривающий сооружение 30 новых районных ТЭС и ГЭС общей мощностью 1,75 ГВт и строительство сетей 35 и 110 кВ для передачи мощности к узлам нагрузки и соединения электростанций на параллельную работу. В 1921 году созданы первые энергосистемы : МОГЭС в Москве и "Электроток" в Ленинграде. Под энергетической системой понимают совокупность электростанций, линий электропередач, подстанций и тепловых сетей, связанных общностью режимов и непрерывностью процессов производства, преобразования, передачи, распределения электрической и тепловой энергии.

При параллельной работе нескольких электростанций нужно было обеспечивать экономичное распределение нагрузки между станциями, регулировать напряжение в сети, не допускать нарушений устойчивой работы. Очевидным решением этих задач была централизация: подчинение работы всех станций системы одному ответственному инженеру. Так родилась идея диспетчерского управления. В СССР впервые функции диспетчера стал выполнять с 1923 г. дежурный инженер 1-й Московской станции, а в 1925 г. в системе Мосэнерго был организован диспетчерский пункт. В 1930 году созданы первые диспетчерские пункты на Урале: в Свердловском, Челябинском и Пермском районах.

Следующим этапом в развитии энергетических систем явилось создание мощных линий электропередачи, объединяющих отдельные системы в более крупные объединенные энергосистемы (ОЭС).

К 1955 году в СССР работают три ОЭС не связанные друг с другом:

- ОЭС Центра (Московская, Горьковская, Ивановская, Ярославская энергосистемы);

- ОЭС Юга (Донбасская, Днепровская, Ростовская, Волгоградская энергосистемы);

- ОЭС Урала (Свердловская, Челябинская, Пермская энергосистемы).

В 1956 году введены в работу две цепи дальней электропередачи 400 кВ Куйбышев – Москва , соединившей ОЭС Центра и Куйбышевскую энергосистему. При этом объединении на параллельную работу энергосистем различных зон страны (Центра и Средней Волги) было положено начало формированию Единой Энергосистемы (ЕЭС) европейской части СССР. В 1957 году ОДУ Центра переименовано в ОДУ ЕЭС европейской части СССР.

В июле 1958 года введен в эксплуатацию первый участок (Куйбышев – Бугульма ) одноцепной дальней электропередачи 400 кВ Куйбышев – Урал . На параллельную работу с ОЭС Центра подключились энергосистемы Предуралья (Татарская и Башкирская). В сентябре 1958 года введен в работу второй участок (Бугульма – Златоуст ) электропередачи 400 кВ Куйбышев – Урал. На параллельную работу с ОЭС Центра подключились энергосистемы Урала. В 1959 году введен в работу последний участок (Златоуст – Шагол - Южная ) электропередачи 400 кВ Куйбышев – Урал. Нормальным режимом ЕЭС европейской части СССР стала параллельная работа энергосистем Центра, Средней Волги, Предуралья и Урала. К 1965 г. в результате объединения энергосистем Центра, Юга, Поволжья, Урала, Северо-Запада и трех закавказских республик было закончено создание Единой энергетической системы европейской части СССР, суммарная установленная мощность которой превысила 50 млн. кВт.

Начало формирования ЕЭС СССР следует отнести к 1970 году. В это время в составе ЕЭС работают параллельно ОЭС Центра (22,1 ГВт), Урала (20,1 ГВт), Средней Волги (10,0 ГВт), Северо-Запада (12,9 ГВт), Юга (30,0 ГВт), Северного Кавказа (3,5 ГВт) и Закавказья (6,3 ГВт), включающие 63 энергосистемы (из них 3 энергорайона). Три ОЭС - Казахстана (4,5 ГВт), Сибири (22,5 ГВт) и Средней Азии (7,0 ГВт) - работают раздельно. ОЭС Востока (4,0 ГВт) находится в стадии формирования. Постепенное формирование Единой энергосистемы Советского Союза путем присоединения объединенных энергосистем в основном завершилось к 1978 году, когда к ЕЭС присоединилась ОЭС Сибири, которая к тому времени уже была соединена с ОЭС Востока.

В 1979 году началась параллельная работа ЕЭС СССР и ОЭС стран-членов СЭВ. С включением в состав ЕЭС СССР объединенной энергосистемы Сибири, имеющей электрические связи с энергосистемой МНР, и организацией параллельной работы ЕЭС СССР и ОЭС стран – членов СЭВ создалось уникальное межгосударственное объединение энергосистем социалистических стран с установленной мощностью более 300 ГВт, охватывающее громадную территорию от Улан-Батора до Берлина.

Распад Советского Союза в 1991 году на ряд независимых государств привел к катастрофическим последствиям. Плановая социалистическая экономика рухнула. Промышленность практически встала. Множество предприятий закрылось. Над энергетикой нависла угроза полного развала. Однако ценой неимоверных усилий удалось сохранить ЕЭС России, реструктурировать ее, адаптировать к новым экономическим отношениям.

Современная Единая энергетическая система России (рис. 1.5) состоит из 69 региональных энергосистем, которые, в свою очередь, образуют 7 объединенных энергетических систем: Востока, Сибири, Урала, Средней Волги, Юга, Центра и Северо-Запада. Все энергосистемы соединены межсистемными высоковольтными линиями электропередачи напряжением 220…500 кВ и выше и работают в синхронном режиме (параллельно). В электроэнергетический комплекс ЕЭС России входит более 600 электростанций мощностью свыше 5 МВт. На конец 2011 года общая установленная мощность электростанций ЕЭС России составила 218 235,8 МВт. Ежегодно все станции вырабатывают около одного триллиона кВт∙ч электроэнергии. Сетевое хозяйство ЕЭС России насчитывает более 10 200 линий электропередачи класса напряжения 110…1150 кВ.

Параллельно с ЕЭС России работают энергосистемы Азербайджана, Белоруссии, Грузии, Казахстана, Латвии, Литвы, Молдавии, Монголии, Украины и Эстонии. Через энергосистему Казахстана параллельно с ЕЭС России работают энергосистемы Центральной Азии – Киргизии и Узбекистана. Через устройство Выборгского преобразовательного комплекса совместно с ЕЭС России работает энергосистема Финляндии, входящая в энергообъединение энергосистем Скандинавии НОРДЕЛ. От электрических сетей России осуществляется также электроснабжение выделенных районов Норвегии и Китая.

Рис. 1.5. Единая энергетическая система Российской Федерации

Объединение отдельных энергетических систем в ЕЭС страны дает ряд технические и экономические выгоды:

Повышается надежность энергоснабжения потребителей за счет более гибкого маневрирования резервами отдельных электростанций и систем, суммарный резерв мощности сокращается;

Обеспечивается возможность увеличения единичной мощности электрических станций и установки на них более мощных блоков;

Общий максимум нагрузки объединенной системы снижается, так как совмещенный максимум всегда меньше суммы максимумов отдельных систем;

Сокращается установленная мощность объединенной энергосистемы за счет разновременности максимумов нагрузки в энергосистемах, расположенных на значительном расстоянии в направлении с востока на запад ("широтный эффект");

Облегчается возможность задавать экономически более выгодные режимы для любых электростанций;

Повышается эффективность использования различных энергетических ресурсов.

1.6. Электрические сети

Единая энергетическая система, как было показано выше, имеет четкую иерархическую структуру: делится на объединенные энергосистемы, которые в свою очередь делятся на региональные энергосистемы. Каждая энергосистема представляет собой электрическую сеть.

Электрические сети являются промежуточным звеном в системе источник-потребитель; они обеспечивают передачу электроэнергии от источников к потребителям и ее распределение . Электрические сети условно подразделяют на распределительные (потребительские), районные (питающие) и системообразующие.

К распределительным электрическим сетям непосредственно подключаются электроприемники или укрупненные потребители электроэнергии (завод, предприятие, комбинат, сельхозпредприятие и т.п.). Напряжение этих сетей составляет 6…20 кВ.

Районные электрические сети предназначены для транспорта и распределения электроэнергии на территории некоторого промышленного, сельскохозяйственного, нефтегазодобывающего и (или) т.п. района. Эти сети в зависимости от местных особенностей конкретной энергосистемы имеют номинальное напряжение 35…110 кВ.

Системообразующие электрические сети с магистральными линиями электропередачи на напряжениях 220…750 (1150) кВ обеспечивают мощные связи между крупными узлами энергосистемы, а в объединенной энергосистеме – связи между энергосистемами и энергообъединениями.

Энергетика людей состоит из двух потоков. Снизу из земли идет один столб, сверху из космоса - другой. У каждого человека эти ниточки энергии индивидуальны. Их нельзя от него оторвать.

Что такое аура

Существует специальный аппарат, которым можно сфотографировать энергетическое поле человека. Зачастую последнее называют "аурой". формируется двумя потоками, закручиваясь вокруг тела. Каждый из них должен идти совершенно свободно, проходя через семь специальных центров, «Омывая» все органы и системы человека, энергия «стекает» из пальцев ног и рук. Очень важным моментом для здоровья и душевного состояния является беспрепятственность. Если в каком-то месте возникает остановка или торможение потока энергии, то органы или ткани начинают болеть. Если прикрыто поступление ее из космоса, то человек испытывает депрессию. Любое нарушение тотчас сказывается на нашем состоянии. К сожалению, такие сбои происходят постоянно. Их может вызвать не только внешнее воздействие, но и любая наша негативная мысль. Правда и то, что серьезные нарушения провоцирует только долговременная остановка энергопотоков. То есть если вы кого-то ненавидите, то вредите не только ему, но и себе.

Негативная энергетика человека

Когда у человека случаются неудачи или несчастья, регулярно срывается исполнение планов, то говорят о том, что его аура загрязнена. Это возможно в том случае, если он серьезно нагрешил или ему искусственно ввели в поле «черную порчу». Энергетика людей очень восприимчива. Дело в том, что мы постоянно общаемся друг с

другом на полевом уровне. Люди могут не знать друг друга, даже не подозревать о существовании, но ауры наши постоянно взаимодействуют. Этот процесс включает в себя обмен некоторыми частями нашей индивидуальной энергии. Сами того не подозревая, мы можем влить негативную энергетику в другого человека. Это происходит, когда мы испытываем зависть, злобу, жалость или иную эмоцию по отношению к одному или нескольким людям. Любая мысль, направленная на человека, сопровождается передачей ему энергии. Бывает, что негативная энергетика в поле вводится намеренно (порча).

Чистка энергетики человека

Фактически забота о чистоте ауры в современном мире - такая же нормальная

процедура, как гигиена или здоровый образ жизни. Энергетика людей, вследствие постоянного обмена, подвержена некоторому «засорению». То есть мы постоянно «хватаем» чужие негативные программы. От них регулярно нужно избавляться. Делается это разными способами. Верующие люди очищают себя молитвой и соблюдением заповедей Господних. У эзотериков существуют свои методики. Также можно воспользоваться услугами магов, которые специализируются на чистке поля. Самым лучшим способом сохранения природной чистоты ауры является защита от негатива. А самая хорошая защита - это любовь и позитивный настрой. Известно, что людей, находящихся на пике эйфории, очень трудно заразить негативом. Он от них просто отскакивает. Просто во время влюбленности энергетика настолько сильна, что чужой «минус» просто не в состоянии ее пробить.

Итак, человек - это, по сути, энергетическое поле. Чем выше и чище его аура, тем ярче и спокойнее протекает его жизнь.

Энергетика – это основа мировой цивилизации. Человек является человеком только благодаря его исключительной, в отличие от всех живых существ, способности использовать и контролировать энергию природы.

Первым освоенным человеком видом энергии была энергия огня. Огонь позволял обогреть жилище и приготовить пищу. Научившись добывать и поддерживать огонь самостоятельно и усовершенствовав технологию производства орудий, люди смогли улучшить гигиену своего тела за счет нагревания воды, улучшить обогрев жилища, а также использовать энергию огня для изготовления орудий для охоты и нападения на другие группы людей, то есть в «военных» целях.

Одним из основных источников энергии в современном мире является энергия сгорания нефтепродуктов и природного газа. Эта энергия широко используется в промышленности и технике, на ней основано использование двигателей внутреннего сгорания автотранспортных средств. Почти все современные виды транспорта эксплуатируются за счет энергии сгорания жидких углеводородов – бензина или дизельного топлива.

Следующий прорыв в освоении энергии произошел после открытия явления электричества. Освоив электрическую энергию, человечество совершило огромный шаг вперед. В настоящее время электроэнергетика является фундаментом для существования многих отраслей хозяйства, обеспечивающим освещение, работу средств связи (в том числе беспроводной), телевидения, радио, электронных устройств, то есть всего того, без чего невозможно представить современную цивилизацию.

Атомная энергетика имеет огромное значение для современной жизни, поскольку стоимость одного киловатта электроэнергии, вырабатываемого атомным реактором, в разы меньше, чем при выработке киловатта электричества из углеводородного сырья или угля. Энергия атома также используется в космических программах и медицине. Однако существует серьезная опасность использования энергии атома в военных или террористических целях, поэтому над объектами атомной энергетики требуется тщательный контроль, а также осторожное обращение с элементами реактора в процессе его эксплуатации.

Цивилизационная проблема человечества заключается в том, что природные запасы нефти, газа, а также угля, также широко используемого в промышленности и химическом производстве, рано или поздно иссякнут. Поэтому остро стоит вопрос о поиске альтернативных источников энергии, в этом направлении ведется множество научных исследований. К сожалению, нефтегазовые компании не заинтересованы в сворачивании нефте- и газодобычи, поскольку на этом основана вся мировая экономика современности. Тем не менее, когда-нибудь решение будет найдено, иначе станет неизбежным энергетический и экологический коллапс, который обернется серьезными неприятностями для всего человечества.

Можно сказать, что энергетика для человечества – небесный огонь, дар Прометея, который может обогреть, принести свет, защитить от мрака и привести к звездам, а может испепелить весь мир. Использование различных видов энергии требует ясного разума, совести и железной воли людей.

Энерге́тика - область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Её целью является обеспечение производства энергии путём преобразования первичной, природной энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:

Электроэнергетика

Электроэнергетика - это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов. Электроэнергетику принято делить на традиционную и нетрадиционную .

Традиционная электроэнергетика

Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единичная электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений.

Тепловая энергетика

В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС ), использующих для этого химическую энергию органического топлива. Они делятся на:

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе угля вырабатывается 46 % всей электроэнергии мира, на базе газа - 18 %, ещё около 3 % - за счет сжигания биомасс, нефть используется для 0,2 %. Суммарно тепловые станции обеспечивают около 2/3 от общей выработки всех электростанций мира

Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов - газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.

Гидроэнергетика

В этой отрасли электроэнергия производится на гидроэлектростанциях (ГЭС ), использующих для этого энергию водного потока.

ГЭС преобладает в ряде стран - в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.

Ядерная энергетика

Отрасль, в которой электроэнергия производится на атомных электростанциях (АЭС ), использующих для этого энергию управляемой цепной ядерной реакции, чаще всего урана и плутония.

По доле АЭС в выработке электроэнергии первенствует Франция, около 70 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония.

Нетрадиционная электроэнергетика

Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км²) и малая единичная мощность. Направления нетрадиционной энергетики:

  • Установки на топливных элементах

Также можно выделить важное из-за своей массовости понятие - малая энергетика , этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика , распределённая энергетика , автономная энергетика и др. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например в России - примерно 96 %), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе.

Электрические сети

Электрическая сеть - совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.

Электрические сети современных энергосистем являются многоступенчатыми , то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность , под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными.

Теплоснабжение

Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами. Такие условия могут быть реализованы в большинстве стран мира только при постоянном подводе к объекту отопления (теплоприёмнику ) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80-90 °C . Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1-3 МПа. В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:

  • источника тепла, например котельной;
  • тепловой сети, например из трубопроводов горячей воды или пара;
  • теплоприёмника, например батареи водяного отопления.

Централизованное теплоснабжение

Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.). Для централизованного теплоснабжения используются два вида источников:

  • Теплоэлектроцентрали (ТЭЦ );
  • Котельные, которые делятся на:
    • Водогрейные;
    • Паровые.

Децентрализованное теплоснабжение

Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал /ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев. Виды децентрализованного отопления:

  • Малые котельные;
  • Электрическое, которое делится на:
    • Прямое;
    • Аккумуляционное;

Тепловые сети

Тепловая сеть - это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.

Энергетическое топливо

Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.

Органическое топливо

Газообразное

природный газ, искусственным:

  • Доменный газ;
  • Продукты перегонки нефти;
  • Газ подземной газификации;

Жидкое

Естественным топливом является нефть, искусственным называют продукты его перегонки:

Твёрдое

Естественным топливом являются:

  • Ископаемое топливо:
  • Растительное топливо:
    • Древесные отходы;
    • Топливные брикеты;

Искусственным твёрдым топливом являются:

Ядерное топливо

В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС. Ядерное топливо получают из природного урана, который добывают:

  • В шахтах (Франция, Нигер, ЮАР);
  • В открытых карьерах (Австралия, Намибия);
  • Способом подземного выщелачивания (Казахстан, США, Канада, Россия).

Энергетические системы

Энергетическая система (энергосистема) - в общем смысле совокупность энергетических ресурсов всех видов, а также методов и средств для их получения, преобразования, распределения и использования, которые обеспечивают снабжение потребителей всеми видами энергии. В энергосистему входят системы электроэнергетическая, нефте- и газоснабжения, угольной промышленности, ядерной энергетики и другие. Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов - в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом , оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов.

Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой. В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях связывают между собой ТЭЦ и котельные. Совокупность всех этих элементов называют энергосистемой , при таком объединении возникают существенные технико-экономические преимущества:

  • существенное снижение стоимости электро- и теплоэнергии;
  • значительное повышение надёжности электро- и теплоснабжения потребителей;
  • повышение экономичности работы различных типов электростанций;
  • снижение необходимой резервной мощности электростанций.

Такие огромные преимущества в использовании энергосистем привели к тому, что уже к 1974 году лишь менее 3 % всего количества электроэнергии мира было выработано отдельно работавшими электростанциями. С тех пор мощность энергетических систем непрерывно возрастала, а из более мелких создавались мощные объединённые системы.

См. также

Примечания

  1. 2017 Key World Energy Statistics (неопр.) (PDF). http://www.iea.org/publications/freepublications/ 30. IEA (2017).
  2. Под общей редакцией чл.-корр. РАН

Наверное каждый обращал внимание на деление людей по степени успешности и притягательности для материальных благ. Одни могут легко создать счастливую семью, другие не напрягаясь зарабатывают много денег. Что самое занимательное, намного сложнее найти человека, который успешен во всех сферах сразу, так чтобы и в семье было счастье и деньги текли рекой. Зато очень много личностей жалуется на успешность только в одной области. Как правило, в другой области добиться успеха гораздо тяжелее, а порой даже и невозможно. Так происходит, потому что у каждого из нас есть энергетика одного доминирующего цвета. От цвета энергетики зависит, какие земные ресурсы мы притянем. У каждого человека в энергетике выделяется один основной цвет, который и служит магнитом для присущих ему благ. Однако этот же цвет не может притянуть блага, которые ему не свойственны.

Что такое энергетика. Отчего зависит ее цвет .

Энергетика это оболочка энергии окружающей нас, которую создаем мы сами. Все наши мысли, цели, приоритеты, отношение к себе и окружающему миру, принципы и поступки влияют на ее цвет и насыщенность. Если человек уверен в себе, любит себя, имеет высокую самооценку, знает свой путь, энергичен, успешен и удачлив тогда его энергетика будет желтой. Если он энергичен, сексуален, любит властвовать и доминировать, умеет работать на полную силу, тогда его энергетика, скорее всего, будет красной.

Всего таких цветов 10. Из них три цвета не успешны и не чисты: коричневый, черный и серый. К остальным относятся: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Подытожим: от направленности нашего мышления и восприятия мира зависит цвет нашей энергетики. Таким образом, к нам притягиваются блага, которые свойственны нашему цвету. Действует это следующим образом: направленность наших мыслей отражается в бессознательном, которое запускает определенный энергетический центр, а тот в свою очередь, начинает вырабатывать определенный энергетический цвет. От насыщенности энергетической оболочки и ее цвета зависит степень притяжения сопутствующих благ. Насыщенность энергетики, в свою очередь, определяется степенью удовлетворения собой, своей жизнью, энергетическими пробоями и сорняками. Научившись мыслить определенным образом, возможно сменить или насытить энергетику.

Что такое энергетика. Основные цвета.

Чаще всего у каждого человека доминирует один цвет энергетики, но иногда к нему примешивается еще один, но в более слабой форме. Так например, часто встречается смесь желтой энергетики с оранжевой или зеленой с примесью голубого цвета. Теперь поподробнее об основных цветах энергетики.

Красная энергетика свойственна людям волевым, властным, эгоистичным, любящим и умеющим доминировать, а также занимать лидирующие позиции. Часто они напористы, сексуальны, трудоспособны и агрессивны. Энергетика этих людей притягивает к себе власть, секс с различными партнерами, активную и насыщенную делами жизнь, а иногда даже и экстремальные приключения. Людям с красной энергетикой присуще добиваться поставленной цели, не стесняясь в методах ее достижения.

Оранжевый цвет энергетики подходит личностям эгоистичным, любящим и умеющим наслаждаться жизнью, зачастую ленивым. Они любят спокойствие, неторопливость в принятии решений, обволакивают себя комфортом и стараются не перетруждаться. Энергетика таких людей притягивает удовольствие и наслаждение жизнью, спокойствие, работу в удовольствие, комфорт и уют.

Желтая энергетика свойственна индивидуумам эгоистичным, уверенным в себе, любящим себя, имеющим высокую самооценку, способным радоваться успеху и верящим в удачу. Энергетика этих людей притягивает удачу, успех, деньги, славу, а также хорошее отношение других людей. Желтой энергетике свойственно быть в центре внимания и на пике успеха.

Зеленая энергетика присуща людям любящим все живое вокруг себя. Как правило, такие люди альтруистичны, справедливы и принципиальны. Энергетика таких людей притягивает любовь, справедливость, добро. Зеленая энергетика легко способна построить крепкие и счастливые семейные отношения.

Голубая энергетика свойственна личностям легким, творческим и коммуникабельным. Носители голубой энергетики притягивают к себе легкость в делах и жизни. Они стремятся к творческой самореализации.

Синяя энергетика присуща людям полагающимся на свой интеллект, продумывающих свои действия на шаг вперед, имеющим развитое логическое мышление. Синяя энергетика притягивает интеллектуальный труд и четко спланированную жизнь с минимумом эмоций. Люди, обладающие синей энергетикой, склонны к профессиональному росту. Они принимают только логический мир, при этом отвергая логически не объяснимую информацию.

Фиолетовая энергетика свойственна духовно развитым индивидуумам, предпочитающим материальному миру духовный, обладающим изрядной мудростью, имеющим богатейший внутренний мир и оказывающим огромное влияние на окружающих людей. Типичными представителями фиолетовой энергетики выступают мудрецы. К фиолетовой энергетике притягиваются духовные знания и предоставляется возможность влиять на развитие других людей.

Теперь несколько слов о неудачных энергетиках, к которым относятся черная, коричневая и серая. К сожалению, носителями таких энергетик являются более шестидесяти процентов людей земли. Но присутствует и положительный момент - процент плохих энергетик снижается. Происходит это благодаря росту уровня жизни и постепенному духовному совершенствованию людей.

Черная энергетика характерна людям злобным, завистливым, мстительным, неудовлетворенным собой и своей жизнью, негативным, с сильной черноткой. Черная энергетика несет миру зло, желая людям всего наихудшего. Эта энергетика притягивает все то, чего желает другим.

К людям с коричневой энергетикой относятся особы, имеющие пессимистичный взгляд на жизнь, с развитыми комплексами, не любящие себя, не уважающие себя, обладающие низкой самооценкой. Зачастую такие люди неплохи, а даже иногда справедливы и благородны, но развитая чернотка мешает чистому восприятию мира, что вносит негатив, развивает комплексы и несет неудачливость. Коричневая энергетика притягивает неудачи, разочарования, стрессы, застой в делах и тяжелую личную жизнь.

Серая энергетика свойственна персонам с пробитой энергетической оболочкой, что лишает человека жизненной энергии и сил. Пробой происходит из за недовольства личности собой или окружающим миром, самобичевания и прочих воздействий чернотки. Серая энергетика пытается спрятаться в своем мире от окружающих невзгод и людей, что закрывает от них в первую очередь успех, удачу и другие блага современного мира. Серая энергетика настолько лишена энергии, что делает ее незаметной для вселенной.

Что такое энергетика. Как ее развить.

Любую энергетику можно развить и сделать ее более привлекательной для благ вселенной. Энергетику можно не только выковать и насытить, но и даже менять ее в зависимости от обстоятельств. Натренировать энергетику возможно как работая над своим мышлением и восприятием мира, так и воздействуя на энергетические центры. Существует замечательная и уникальная методика развития энергетики. Узнать ее возможно посетив тренинг «четыре рывка к успеху». Изучить подробности тренинга «четыре рывка к успеху» возможно, перейдя по.

От редакции: Сегодня не утихают споры о целесообразности и эффективности совместного использования объектов «малой» и «большой» энергетики. Предлагаем Вашему вниманию статью, в которой приводится мнение одного из ведущих российских специалистов.

Роль «малой» энергетики в решении проблем «большой» энергетики

К. т.н. А. А. Салихов, директор Департамента мобилизационной подготовки оперативного контроля, ГО и ЧС в ТЭК, Министерство энергетики РФ

(из книги А.А. Салихова «Неоцененная и непризнанная «малая» энергетика», М.: Издательство «Новости теплоснабжения», 2009 г.)

Проблемы надежности энергоснабжения

Одной из важнейших задач, которая сегодня стоит перед энергетиками, является повышение надежности энергоснабжения потребителей. Она зависит от многих причин, но основными из них являются:

■ появление в целом ряде регионов России дефицита в электрической энергии из-за роста энергопотребления;

■ моральное и физическое старение оборудования энергопредприятий;

■ недостаточная сбалансированность между потреблением и генерацией в сочетании с ветхостью и недостаточной пропускной способностью электрических сетей;

■ угроза террористических актов в отношении энергетических объектов, ЛЭП, газо- и нефтепроводов;

■ аномальные и стихийные климатические явления.

Исторически сложилось, что на территориях с развитой генерацией количество электростанций достигает десятка, тогда как в большинстве республик, краев и областей их можно пересчитать по пальцам. Например, на территории Калмыкии вообще нет генерирующих источников, в Курганской области одна ТЭЦ, Марийская и Мордовская республики имеют по 2-3 источника, суммарная мощность которых колеблется от 250 до 350 МВт, в Ивановской и Омской областях всего по 3 электростанции. И этот список можно продолжить. Ясно, что надежность энергоснабжения конечных потребителей в такой ситуации определяется, в основном, надежностью работы электросетевого хозяйства региона (подстанций и электрических сетей).

Надежность же работы самих электростанций, а следовательно, и надежность поставки продукции в сети, зависит от количества одновременно работающих турбогенераторов, котлов. В летнее время на некоторых ТЭЦ из-за отсутствия или отказа потребителей от тепловых нагрузок возникают режимы, когда приходится

оставлять в работе один турбогенератор с одним котлом. При этом резко увеличивается вероятность посадки этой станции на нуль.

Также общеизвестно, что столицы республик, областей и краев, т.е. большие города регионов, особенно «миллионники», зимой и летом испытывают дефицит в электрической мощности, которая традиционно доставляется по ВЛ-500, 220 кВ от крупных энергоисточников - ГЭС, ГРЭС, АЭС, расположенных далеко от этих городов. Поэтому надежность электроснабжения крупных городов также в значительной степени уязвима из-за отсутствия баланса генерации и потребления в пределах самого города.

О термине «малая» энергетика

Надо сказать, что в энергетической литературе до сих пор нет четкой трактовки этого понятия.

Обычно понятие «малая» энергетика включает в себя генерирующие установки мощностью до 30 МВт - это маломощные теплоэлектроцентрали (за рубежом их чаще называют «когенерирую-щие установки»), малые гидроэлектростанции, установки, перерабатывающие энергию ветра и солнца, и т.д. Известен еще один термин - «распределенная» энергетика. Это определенный уклад системы организации электро- и теплоснабжения в регионе. Это пласт и диапазон мощностей агрегатов, которые потенциально могут быть установлены как генерирующие источники на разбросанных по территории региона объектах, работающие в общую сеть, а также и на существующих ныне электростанциях, особенно на ТЭЦ. Образуется так называемая распределенная (рассредоточенная) по территории региона сеть электростанций (или распределенная энергетика), в основном из объектов «малой» энергетики.

Так что, термины «малая» и «распределенная» энергетика в рассматриваемом случае являются синонимами и употребляются, чтобы обозначить ту нишу, которая пока не востребована и не занята в отечественной энергетике.

Объекты «малой» энергетики и их размещение

«Малая» энергетика может сыграть весьма важную и положительную роль в повышении комплексных показателей эффективности и надежности «большой» энергетики.

Чтобы лучше понять некоторые технические аспекты распределенной энергетики, представим себе следующее. На территориях, где раньше размещались 2-3 крупных генерирующих источника, появляются несколько десятков центров генерации, расположенных преимущественно в районных центрах, маленьких городах и на территориях предприятий. Электрическую энергию эти потребители раньше получали издалека по электрическим сетям, но сейчас она производится и, в основном, потребляется непосредственно на месте. Если возникает излишек, то продукция отпускается во внешнюю сеть; если дефицит, то недостающая часть баланса, как и раньше, поступает по электрическим сетям.

Очевидно, что надежность энергоснабжения потребителей при появлении объектов «распределенной» энергетики резко возрастает. Ранее отключение единственной действовавшей магистральной электрической сети привело бы к отключению всех потребителей, подключенных к этой линии. С появлением генерирующих источников на местах можно создать такие устойчивые системы и связи, что если не все, то многие потребители не почувствуют отключение той или иной линии по каким-то причинам. Хотя в некоторых случаях (например, при достаточно развитой мощности ветроэлектростанций) они могут усложнить работу системного оператора, но эта проблема чисто инженерная и легко решаемая. Однако думается, что ни у кого не вызывает сомнения тот факт, что «малая» энергетика в виде распределенных по территории региона генерирующих источников существенно повышает надежность энергоснабжения потребителей. Реализация концепции распределенной энергетики будет способствовать снижению физических потерь в существующих электрических сетях из-за уменьшения перетоков по линиям электропередач. Поэтому вопросы развития и технического перевооружения электрических сетей и размещения генерирующих источников в регионах должны рассматриваться в комплексе и совместно. Это может способствовать оптимизации (существенному снижению) затрат как при размещении генерации, так и при обновлении сетевого хозяйства на местах в сравнении с вариантом решения этих проблем независимо друг от друга. В свою очередь, у сетевиков появится возможность концентрировать финансовые средства для реализации проектов строительства стратегически важных ЛЭП и ПС, способствующих дальнейшему развитию Единой Энергетической Сети России. Можно будет осуществить переброску мощностей крупных перспективных Сибирских угольных ТЭС, ГЭС в зоны Уральского и Центрального регионов, а также построить линии для экспортных поставок за рубеж.

Размещение источников генерации «малой» энергетики не должно быть самоцелью. Результат ее внедрения должен заключаться в повышении не только надежности, но и эффективности и других важных показателей энергопроизводства. В первую очередь, необходимо реализовать возможность ликвидации или уменьшения дефицита энергомощностей крупных городов с полумиллионным и миллионным населением. Как правило, это областные и краевые центры, столицы республик. Современные объекты распределенной энергетики позволяют осуществить этот замысел с большим экономическим эффектом.

Сегодня уже многим понятно, что существующие традиционные ТЭЦ (как правило, работающие на газообразном топливе) являются прекрасным объектом для установки там ГТУ мощностью от 20 до 150 МВт в качестве надстройки к существующей инфраструктуре. В секторе теплоснабжения страны действуют 486 ТЭЦ, и их потенциал надстроек таков, что ТЭЦ России готовы вместить в себя несколько инвестиционных проектов размером 30-40 тыс. МВт.

Эти довольно мощные объекты «распределенной» энергетики будут располагаться на территории действующих ТЭЦ таким образом, что их установленная мощность может в зависимости от потребности города и региона возрасти на несколько сотен мегаватт, вплоть до обеспечения баланса потребности города в электрической энергии и мощности.

Следующими потенциально интересными объектами размещения «малых» генерирующих источников в виде ГТУ являются многочисленные котельные, расположенные не только в больших, но и в малых городах, а также в поселках городского типа. Их по стране насчитывается около 6,5 тыс. от 20 до 100 Гкал/ч, более 180 тыс. котельных меньшей мощности, где с термодинамической точки зрения газ сжигается неразумно.

Ныне во многих регионах 40-60% газового топлива горит в коммунальных котельных и в быту для нужд населения. Здесь могут найти широкое применение объекты «малой» энергетики мощностью от сотен кВт до нескольких МВт. И они реально будут распределены по территории региона.

Проблема размещения объектов «малой» энергетики на территориях действующих предприятий

Противники надстройки существующих ТЭС газотурбинными установками очень часто приводят такие аргументы, как нехватка площадей на генплане действующих станций. По этому поводу необходимо констатировать следующее. Практически все наши действующие ТЭС и котельные, построенные по нормам и правилам проектирования энергообъектов советского времени, занимают большие площади. Западные специалисты на таких же площадях по своим нормам вместо одного нашего объекта располагают несколько.

При этом ни по эстетическим, ни по технико-экономическим показателям западные станции нашим не проигрывают.

Давно назрела необходимость пересмотра многих Норм и Правил, которые препятствуют внедрению новых технологий. Это относится и к ГОСТам, и СНиПам, и другим НТД. Например, требование СНиП о запрещении прокладки газопроводов высокого давления по территории городов и населенных пунктов в нашей стране усложняет строительство газотурбинных электростанций. В большинстве стран Западной Европы газопроводы под давлением 60-70 кгс/см2 проложены до центра больших городов, что, естественно, упрощает внедрение газотурбинных технологий.

В новых Правилах должны быть введены такие требования и нормы, как МВт/га в отношении генпланов, МВт/м 2 и МВт/м 3 в отношении главных корпусов.

С другой стороны, «нет худа без добра». На больших территориях наших электростанций и котельных, обеспечивая все требования промышленной безопасности, можно построить или пристроить значительные мощности на базе современных технологий. Например, надстройка Казанской ТЭЦ-1 двумя ГТУ по 25 МВт практически не привела к значительному изменению существующей инфраструктуры и площадей.

Роль «малой» энергетики в обеспечении энергетической безопасности России

«Малая» энергетика способна сыграть свою положительную роль в обеспечении энергетической безопасности страны. Маркетинговые исследования, проведенные по оценке рынков СМР, ПИР, оборудования, стройматериалов, необходимых для реализации проектов 5-летней инвестиционной программы Холдинга РАО ЕЭС по объектам тепловой генерации, показали, что возможности отечественного машиностроения не способны удовлетворить планы обновления тепловой генерации страны. По объему вводимых мощностей мы будем вынуждены прибегнуть к услугам иностранных фирм. И это, в первую очередь, касается оборудования мощных блоков П ГУ 400, 800 МВт.

Как уже было сказано, имеющийся мощный потенциал теплового рынка многочисленных котельных в процессе производства дешевой электроэнергии пока не задействован. По статистической отчетности его величина в целом по стране оценивается цифрой 1 млрд Гкал.

При этом их суммарная установленная мощность при круглогодичном использовании равнялась бы 100 тыс. МВт. Как видно, это почти три 5-летние инвестиционные программы Холдинга по 34 тыс. МВт. Если взглянуть на этот потенциал с точки зрения повышения эффективности использования поставляемого газа, то сжигание его когенерационным способом позволило бы уменьшить потребление газа до 1,5 раз, или в столько же раз увеличить генерацию электрической и тепловой энергии при сохранении уровня потребления поставляемого газа.

Для надстройки этих котельных могут быть востребованы ГПА и ГТУ мощностного ряда от 1 до 30 МВт. ГПА отечественного производства, удовлетворяющих требованиям энергетики, пока почти нет. А вот отечественные производители ГТУ мощностного ряда от 2,5 до 25 МВт буквально выстроились на старте и ждут лишь отмашки. Это отечественные моторостроительные авиационные заводы. Их оборудование уже прошло этап апробирования для наземных целей, находит широкое применение на объектах «Газпрома», и используется как опытно-промышленные энергоисточники в других отраслях. Потенциал отечественного авиационного машиностроения для энергетики пока еще ни со стороны энергетиков, ни со стороны коммунальщиков не востребован. Для ГТУ «малой» энергетики сопутствующее оборудование: котлы-утилизаторы, генераторы и др. также может быть поставлено отечественными производителями. По мере наработки опыта, числа часов использования и числа агрегатов и последующего усовершенствования, отечественная «малая» энергетика будет способна успешно конкурировать с агрегатами производства передовых иностранных фирм. Да и сейчас показатели эффективности у многих из них уже находятся на передовом мировом уровне, хотя как было выше сказано, при комбинированном способе их использования этот показатель определяющей роли не играет. Возможность же их производства на нескольких отечественных заводах дает заказчику право выбора, оптимизируя их стоимость. В свою очередь, «малая» энергетика способна внести большой вклад в дело обеспечения энергетической независимости России.

Моральный и физический износ существующих генерирующих мощностей «большой энергетики» находится на критическом уровне, а новые много миллиардные инвестиции, в условиях кризиса невозможны, выход в пересмотре развития энергетической концепции, в сторону обеспечения энергобережливости и энергоэффективности производств даже в тех зонах, где большая энергетика до сего времени рассматривалась как безальтернативная. Отсутствие инвестиций в сетевые мощности, привело к введению платы за технологическое присоединение к сетям. Для потребителя это значительные, а порой и «неподъемные» суммы. Более того, есть регионы, где даже за плату получить мощность невозможно - ее просто нет.

В этом случае оптимальное (а порой, и единственное) решение - малая энергетика. Понятие "малая энергетика" обычно включает в себя расположенные в непосредственной близости от потребителя или группы потребителей, энергогенерирующие установки мощностью до 25 МВт.

К объектам малой энергетики относятся малые ГЭС и ТЭЦ, биогазовые, ветроэнергетические и солнечные установки, газовые и дизельные электростанции. Преимущества таких объектов это высокая автономность и эффективность, экологичность, существенно меньше инвестиций и малые сроки создания, что позволяет потребителю не зависеть от централизованного энергоснабжения и его состояния и использовать оптимальные для данных условий источники и средства производства энергии. Строительство когенерационной ТЭЦ мощностью 1МВт «под ключ» стоит в среднем 1 000 000- 1 200 000 евро.

Поэтому сегодня высок интерес к малой энергетике, как со стороны владельцев промышленных предприятий, так и региональных и муниципальных руководителей. Потребность в объектах малой энергетики, и реконструкции существующих настолько высока, что нет практически ни одного населенного пункта, промпредприятия или района, где не требовалась бы новая генерация.

В России наибольшее распространение получили газовые и дизельные теплоэлектростанции, работающие по принципу когенерации .

Когенерация - это технология комбинированной выработки двух форм полезной энергии (электрической и тепловой) из одного первичного источника топлива. Только при оптимальном использовании обоих форм энергии достигается наибольший экономический эффект когенерации в малой энергетике.

Оценка среднего коэффициент использования топлива при раздельном производстве электрической и тепловой энергии в большой энергетике:

При этом потери при передаче электроэнергии на большие расстояния могут достигать 30%, а тепловой, в случае изношенных сетей - 70%.

Оценка среднего коэффициент использования топлива когенерационного цикла:

Следует заметить, что при этом когенерационная установка отличается значительно меньшими эксплуатационными расходами (одна единица основного оборудования производит оба вида энергии в одном цикле), простотой в обслуживании, легкостью и малыми затратами на монтаж, малыми сроками доставки и производства.

Наиболее рентабельны проекты строительства энергоцентров при промышленных предприятиях, имеющих двух-трех сменный режим работы. В этом случае, коэффициент загрузки оборудования будет близок к 90%, что значительно снизит сроки окупаемости проекта (3-5 лет).

Выгодно принимать участие в технической реконструкции существующих объектов малой энергетики, используя при этом новое оборудование и современные технологии. Такие объекты, как правило, находятся в районе с развитой инфраструктурой и проблем со сбытом тепла и электричества не возникает.

Обеспечивать энергоносителями объекты ЖКХ выгодно, в первую очередь, с политической точки зрения, экономика, в подобных проектах, на втором плане. Хотя семилетняя окупаемость проектов тоже является привлекательной.

Малая энергетика требует благоприятного инвестиционного климата, должной государственной (как региональной, так и федеральной) поддержки, решения вопросов газификации региона или отдельно взятого предприятия. На первом этапе это и технические вопросы, и лимиты на газ. На втором этапе, выбирается техническое решение, подбирается оборудование, проектная организация, схема финансирования, генеральный подрядчик.

Как правило, в регионах, нет специалистов способных возглавить процесс организации строительства энергоцентров от начального этапа до ввода его в эксплуатацию. И как следствие, на каждом этапе Заказчика ждут подводные камни и недобросовестные консультанты. В итоге замедляются сроки строительства, теряется финансовая привлекательность проекта.

ООО «ТрансДорСтрой» сегодня решает весь комплекс вопросов связанных со строительством объектов малой энергетики от финансирования строительства, газификации, получения всех необходимых разрешений и согласований, до сдачи объекта под ключ и последующей эксплуатации.

География уже выполненных проектов обширна это: Курская область, Новосибирская область, Алтайский край, Республика Алтай, Московская область, республика Коми и т.д.

Результат работы с нами это значительный экономический эффект, от общего увеличения эффективности и стабильности функционирования энергосистемы за счет снижения потерь и увеличения КПД, экономии природных ресурсов, улучшения экологической обстановки.