» » Плавающая атомная электростанция. Начались испытания плавучей аэс "академик ломоносов". Безопасность работы АЭС

Плавающая атомная электростанция. Начались испытания плавучей аэс "академик ломоносов". Безопасность работы АЭС

Подписан приказ о начале швартовных испытаний первого в мире плавучего энергетического блока (ПЭБ) "Академик Ломоносов" . Согласно графику строительства ПЭБ, испытания начнутся 1 июля 2016 года.

Проведение швартовных испытаний на заказе – это важнейший этап строительства, определяющий начало его финальной стадии. Швартовные испытания пройдут по особой технологической схеме и будут совмещены с достроечными работами в помещениях перегрузочного комплекса, аппаратных и машинных отделений, что потребует от завода высокой организованности и повышенных мер безопасности.

Испытания будут проходить последовательно, чтобы не допустить совмещения строительства и испытаний в одних и тех же районах и помещениях строящегося ПЭБ. Плановый срок окончания швартовных испытаний 30 октября 2017 г.

После этого ПАТЭС «Академик Ломоносов» уже выйдет с завода как готовый объект, который будет доставлен по Северному морскому пути к месту работы и подключен к береговой инфраструктуре, сооружаемой в порту г. Певеке . Готовность энергоблока к транспортировке должна быть достигнута к концу 2017 г. В сентябре 2019 г. «Росэнергоатом» планирует приступить к установке энергоблока на штатное место, а в конце осени 2019 г. – начать испытания ПАТЭС и ввести ее в эксплуатацию.

ПЭБ проекта 20870 "Академик Ломоносов" - это несамоходное судно с двумя атомными реакторными установками "КЛТ-40" на борту, предназначенное для обеспечения электроэнергией и теплом труднодоступных объектов в северных морях, а также для опреснения морской воды. Согласно теххарактеристикам, ПЭБ способен в номинальном режиме выдавать в береговые сети до 70 МВт электроэнергии и 300 МВт тепловой энергии, что достаточно для поддержания жизнедеятельности города с населением 200 000 человек.

Срок эксплуатации энергоблока составляет сорок лет. При этом каждые три года необходимо совершать перезарядку реакторов. Эксплуатировать ПЭБ будет постоянный экипаж судна из 69 человек.

Строительство гидротехнических и береговых сооружений для первой в мире плавучей АТЭС >>

«Академик Ломоносов» проекта 20870 предназначен для работы в составе плавучей атомной теплоэлектростанции (ПАТЭС). Станция оснащена реакторными установками КЛТ-40С, которые способны вырабатывать до 70 МВт электроэнергии и 50 Гкал/ч тепловой энергии в номинальном рабочем режиме.

Плавучий энергоблок заменит выбывающие к 2019 году на Чукотке генерирующие мощности - Билибинскую АЭС и Чаунскую ТЭЦ , что важно с точки зрения гарантированного и устойчивого энергообеспечения региона.

Российская Федерация – абсолютный мировой монополист в области плавучих атомных электростанциях, которые перспективно использовать в прибрежном инфраструктурном строительстве.

В настоящее время ПАТЭС «Академик Ломоносов» (проект 20870) достраивается на «Балтийском заводе». По плану, она должна быть сдана в сентябре 2016 г. , но учитывая "экспериментальный характер" первой ПАТЭС, окончательные сроки ее сдачи и бюджет остаются "плавающими". Несмотря на соглашение с Балтзаводом о сдаче ПАТЭС осенью 2016 года, в "Росатоме" признают, что на достройку и испытания потенциально есть время до 2019 года. Ожидается, что плавучий энергоблок весной 2018 года отбуксируют с Балтийского завода в Мурманск на площадку Росатомфлота, где осенью состоится загрузка ядерного топлива в реактор и физический пуск энергоблока .

Сама идея использования атомной энергии в транспортных установках не является новой. Подобные проекты разрабатывались в Англии, Германии и в США. Но эти страны к настоящему моменту отказались от проектов плавучих АЭС, посчитав их бесперспективными.

Атомфлот планирует построить док для нового ледокола ЛК-60 >>

Впервые плавучие реакторы использовались в США для обеспечения энергией Панамского канала (1966–1976 гг.) и американской исследовательской базы в Антарктике (1962–1972 гг.). Например, американская плавучая станция Sturgis (мощность 10 МВт) с 1976 г. находилась в нерабочем состоянии на стоянке в штате Виргиния, и недавно ее отбуксировали в Галвестон для утилизации.

Недавно китайская корпорация CGN (China General Nuclear Power Corporation) объявила об официальном запуске проекта плавучей станции с реактором малой мощности ACPR50S.

Как сообщил представитель корпорации Хуан Сяофэй в городе Шэньчжэнь (провинция Гуандун, Южный Китай), CGN заключила соглашение с корпорацией Dongfang Electric Corporation о покупке корпуса реактора под давлением.

Проект ACPR50S считается наиболее оптимальным решением комбинированных поставок тепла, электроэнергии и пресной воды для работ по освоению морских ресурсов, а также для поставок электроэнергии и оказания помощи при возникновении чрезвычайных ситуаций в островных и прибрежных районах.

В Советском Союзе в 80-х годах разрабатывали проект плавучей АЭС «Волнолом 3» с реактором АБВ-6 (мощность 12 МВт) для использования на полигоне МО на Новой Земле. Однако работы над созданием этой ПАТЭС были прекращены в начальной стадии.

Спущен на воду самый большой в мире атомный ледокол >>

Первый гражданский проект ПАТЭС в России появился в начале 90-х годов. В ходе выполнения Постановления Правительства России от 9 июня 1992 года за №389 о путях преодоления кризиса топливного энергетического комплекса Дальнего Востока и Восточной Сибири группа экспертов Минатома в 1993 году предложила использовать АЭС малой мощности (100–180 МВт) на основе реакторов судовых и корабельных атомных энергетических установок. По заказу Минатома России в период 1992–1994 гг. был проведен ряд конкурсов на лучший проект атомной станции малой мощности, организовано АО «Малая энергетика». В классе реакторных установок свыше 50 МВт первое место в конкурсе было присуждено проекту АЭС на основе плавучего энергоблока с двумя реакторными установками типа КЛТ-40С.

Активная фаза строительства головного плавучего энергоблока для первой российской ПАТЭС началась в 2007 г. Малайзия, Индонезия, Южная Корея, Мозамбик, Намибия, ЮАР, Индия, Вьетнам проявили большой интерес к проекту, и Росатом планирует передавать ПАТЭС в лизинг этим странам. В качестве перспективного рынка Росатом рассматривает также страны Южной Америки.

Первая в мире плавучая атомная электростанция, спроектированная так, чтобы устоять перед цунами и землетрясениями, подобно тем, что стали причиной катастрофы на Фукусиме (2011), будет открыта на российском Крайнем Севере — Чукотке и начнет производить электроэнергию в 2020 году.

«На данный момент платформа с двумя реакторами на борту проходит морские испытания в доке, которые завершатся к концу этого года или в 2017-ом», — рассказал EFE Георгий Тихомиров, профессор Московского Инженерно-физического института (МИФИ) (Национальный исследовательский ядерный университет «МИФИ» — прим. ред. ).

Затем АЭС будет отбуксирована из Санкт-Петербурга в самый северный город России — Певек (Чукотка), который расположен в защищенной бухте, чтобы заменить собой обычную электростанцию.

«Строительство необходимой портовой инфраструктуры для установки плавучей АЭС началось в конце 2015 года. Прежде, чем установить опоры для платформы, необходимо подвести электролинию для передачи энергии в общую сеть», — объяснил он.

Первый киловатт в 2020 году

Профессор рассчитывает, что «к 2020 году плавучая АЭС произведет свой первый киловатт электроэнергии», называя этот срок «реальным» вне зависимости от колебаний в экономике.

Баржа, как которой установлены оба ядерных реактора имеет 144 метра в длину, 30 — в ширину и 6 метров осадки и водоизмещением 21 тысяча тонн. «Это все равно что круиз. Персонал будет проживать на платформе в условиях четырехзвездочного отеля, со всеми удобствами, ведь им придется провести в каютах целый год», — заметил Тихомиров.

Что касается реакторов (КЛТ-40C), каждый из них обладает мощностью 40 МВт, они могут работать одновременно и будут располагать запасом топлива для автономной работы в течение трех лет.

«Каждые три года производится перегрузка топлива, а каждые двенадцать проводится полное техобслуживание. Предполагается, что общий срок эксплуатации АЭС — 40 лет», — сообщает собеседник EFE.

На станции будет использоваться низкообогащенный уран, а отработанное топливо будет накапливаться на самой платформе. По словам российского физика, плавучая АЭС способна производить такое же количество электроэнергии, что и обычная.

Тихомиров считает, что устанавливаемые на платформе реакторы «абсолютно надежны», что доказывает их бесперебойная работа в течение многих лет на борту «по меньшей мере трех атомных ледоколов».

В случае цунами или землетрясения АЭС поднимут над уровнем моря. «Реакторные блоки компактные и автономные. Это не такие реакторы, как были установлены на Чернобыльской АЭС, разумеется. Вариант развития событий по фукусимскому сценарию также исключен», — утверждает ученый.
Эксперт объяснил, что в случае опасности цунами или подземных толчков, что «маловероятно» в Арктике, «АЭС будет поднята над уровнем моря при помощи прочных опор, на которых она установлена».

«Это сложное техническое решение, но оно гарантирует как безопасность, так и бесперебойную поставку электроэнергии», — сказал он.

После аварии на атомной электростанции Фукусима в Японии (2011 году) российские власти пообещали не размещать плавающие АЭС в зонах с высокой сейсмической активностью. По этой причине был исключен вариант установки станции на вулканическом полуострове Камчатка в Тихом океане.

Гринпис: бомба замедленного действия

«Гринпис», напротив, считает, что подобные станции являются настоящими «бомбами с часовым механизмом», поскольку на них накапливается большое количество урана, а, кроме того, «подарком для террористов», а значит для их охраны потребуется целый военный флот, что сделает проект чрезвычайно дорогостоящим.

В ответ на эти утверждения Тихомиров исключает возможную угрозу зхвата АЭС террористами, поскольку все современные атомные электростанции оснащены чрезвычайными мерами защиты, чтобы предотвратить доступ к радиоактивному топливу.

«До сих пор не было ни одной попытки захватить атомные станции. Кроме того, Чукотка в силу своей удаленности является вполне безопасным местом», — напомнил ученый.

Помимо снабжения экологически чистой электроэнергией удаленных районов, плавучая АЭС способна вырабатывать тепло, что позволит отказаться от использования для этих целей угля, газа и нефти.

Исследование ресурсов российской Арктики

От успеха этого первого проекта будет зависеть, одобрит ли российское правительство строительство остальных запланированных плавучих АЭС — хотя «Росатом» уже подготовил документацию на 5-7 мобильных платформ для «исследования ресурсов российской Арктики».

«Преимуществом плавучей АЭС является то, что она может быть пришвартована практически в любом месте, где есть линия электропередачи», — отмечает Тихомиров.

Он полагает, что «если на арктическом шельфе будет найдена нефть, (…) наиболее логичным будет установить там плавучую АЭС».

«Почему? Да потому что обычная электростанция обойдется гораздо дороже», — уверяет профессор и добавляет, что таяние арктических льдов и открытие арктического морского пути в качестве альтернативы Суэцому каналу мгновенно повысит спрос на плавучие АЭС на рынке.

Тихомиров убежден, что такие установки могли бы стать «хорошим коммерческим продуктом», но считает «преждевременным» говорить об их экспорте, хотя такие страны, как Чили, Бразилия или Индонезия, уже выразили свою заинтересованность проектом, а Китай решил запустить свою версию плавучих АЭС.

США запустили в 1968 году плавучую АЭС (Surgis) в Панамском канале, которая была выведена из эксплуатации в 1976-ом по причине высоких затрат на ее содержание.

Атомная электроэнергетика – современный и быстро развивающийся способ добычи электричества. А вы знаете, как устроены атомные станции? Каков принцип работы АЭС? Какие типы ядерных реакторов сегодня существуют? Постараемся детально рассмотреть схему работы АЭС, вникнуть в устройство ядерного реактора и узнать о том, насколько безопасен атомный способ добычи электроэнергии.

Как устроена АЭС?

Любая станция – это закрытая зона вдалеке от жилого массива. На ее территории находятся несколько зданий. Самое главное сооружение – здание реактора, рядом с ним расположен машинный зал, из которого реактором управляют, и здание безопасности.

Схема невозможна без ядерного реактора. Атомный (ядерный) реактор – это устройство АЭС, которое призвано организовать цепную реакцию деления нейтронов с обязательным выделением энергии при этом процессе. Но каков принцип работы АЭС?

Вся реакторная установка помещается в здание реактора, большую бетонную башню, которая скрывает реактор и в случае аварии удержит в себе все продукты ядерной реакции. Эту большую башню называют контейнтмент, герметичная оболочка или гермозона.

Гермозона в новых реакторах имеет 2 толстые бетонные стенки – оболочки.
Внешняя оболочка толщиной в 80 см обеспечивает защиту гермозоны от внешних воздействий.

Внутренняя оболочка толщиной в 1 метр 20 см имеет в своем устройстве специальные стальные тросы, которые увеличивают прочность бетона почти в три раза и не дадут конструкции рассыпаться. С внутренней стороны она выложена тонким листом специальной стали, которая призвана служить дополнительной защитой контейнтмента и в случае аварии не выпустить содержимое реактора за пределы гермозоны.

Такое устройство атомной станции позволяет выдержать падение самолета весом до 200 тонн, 8 бальное землетрясение, торнадо и цунами.

Впервые герметичная оболочка была сооружена на американской АЭС Коннектикут Янки в 1968 году.

Полная высота гермозоны – 50-60 метров.

Из чего состоит атомный реактор?

Чтобы понять принцип работы ядерного реактора, а значит и принцип работы АЭС, нужно разобраться в составляющих реактора.

  • Активная зона. Это зона, куда помещается ядерное топливо (тепловыделитель) и замедлитель. Атомы топлива (чаще всего топливом выступает уран) совершают цепную реакцию деления. Замедлитель призван контролировать процесс деления, и позволяет провести нужную по скорости и силе реакцию.
  • Отражатель нейтронов. Отражатель окружает активную зону. Состоит он из того же материала, что и замедлитель. По сути это короб, главное назначение которого – не дать нейтронам выйти из активной зоны и попасть в окружающую среду.
  • Теплоноситель. Теплоноситель должен вобрать в себя тепло, которое выделилось при делении атомов топлива, и передать его другим веществам. Теплоноситель во многом определяет то, как устроена АЭС. Самый популярный теплоноситель на сегодня – вода.
    Система управления реактором. Датчики и механизмы, которые приводят реактор АЭС в действие.

Топливо для АЭС

На чем работает АЭС? Топливо для АЭС – это химические элементы, обладающие радиоактивными свойствами. На всех атомных станциях таким элементом выступает уран.

Устройство станций подразумевает, что АЭС работают на сложном составном топливе, а не на чистом химическом элементе. И чтобы из природного урана добыть урановое топливо, которое загружается в ядерный реактор, нужно провести множество манипуляций.

Обогащенный уран

Уран состоит из двух изотопов, то есть в его составе есть ядра с разной массой. Назвали их по количеству протонов и нейтронов изотоп -235 и изотоп-238. Исследователи 20 века начали добывать из руды 235й уран, т.к. его легче было разлагать и преобразовывать. Выяснилось, что такого урана в природе всего 0,7 % (остальные проценты достались 238му изотопу).

Что делать в этом случае? Уран решили обогащать. Обогащение урана это процесс, когда в нем остается много нужных 235х изотопов и мало ненужных 238х. Задача обогатителей урана – из 0.7% сделать почти 100% урана-235.

Обогатить уран можно с помощью двух технологий – газодиффузионной или газоцентрифужной. Для их использования уран, добытый из руды, переводят в газообразное состояние. В виде газа его и обогащают.

Урановый порошок

Обогащенный урановый газ переводят в твердое состояние – диоксид урана. Такой чистый твердый 235й уран выглядит как большие белые кристаллы, которые позже дробят в урановый порошок.

Урановые таблетки

Урановые таблетки – это твердые металлические шайбы, длиной в пару сантиметров. Чтобы из уранового порошка слепить такие таблетки, его перемешивают с веществом – пластификатором, он улучшает качество прессования таблеток.

Прессованные шайбы запекают при температуре 1200 градусов по Цельсию более суток, чтобы придать таблеткам особую прочность и устойчивость к высоким температурам. То, как работает АЭС, напрямую зависит от того, насколько хорошо спрессовали и запекли урановое топливо.

Запекают таблетки в молибденовых ящиках, т.к. только этот металл способен не расплавиться при «адских» температурах свыше полутора тысяч градусов. После этого урановое топливо для АЭС считается готовым.

Что такое ТВЭЛ и ТВС?

Активная зона реактора внешне выглядит как огромный диск или труба с дырками в стенках (в зависимости от типа реактора), раз в 5 больше человеческого тела. В этих дырках находится урановое топливо, атомы которого и проводят нужную реакцию.

Просто так закинуть топливо в реактор невозможно, ну, если вы не хотите получить взрыв всей станции и аварию с последствиями на пару близлежащих государств. Поэтому урановое топливо помещается в ТВЭЛы, а потом собирается в ТВС. Что значат эти аббревиатуры?

  • ТВЭЛ – тепловыделяющий элемент (не путать с одноименным названием российской компании, которая их производит). По сути это тонкая и длинная циркониевая трубка, сделанная из сплавов циркония, в которую помещаются урановые таблетки. Именно в ТВЭЛах атомы урана начинают взаимодействовать друг с другом, выделяя тепло при реакции.

Цирконий выбран материалом для производства ТВЭЛов благодаря его тугоплавкости и антикоррозийности.

Тип ТВЭЛов зависит от типа и строения реактора. Как правило, строение и назначение ТВЭЛов не меняется, разными могут быть длина и ширина трубки.

В одну циркониевую трубку автомат загружает более 200 урановых таблеток. Всего в реакторе одновременно работают около 10 миллионов урановых таблеток.
ТВС – тепловыделяющая сборка. Работники АЭС называют ТВС пучками.

По сути это несколько ТВЭЛов, скрепленных между собой. ТВС – это готовое атомное топливо, то, на чем работает АЭС. Именно ТВС загружаются в ядерный реактор. В один реактор помещаются около 150 – 400 ТВС.
В зависимости от того, в каком реакторе ТВС будет работать, они бывают разной формы. Иногда пучки складываются в кубическую, иногда в цилиндрическую, иногда в шестиугольную форму.

Одна ТВС за 4 года эксплуатации вырабатывает столько же энергии как при сжигании 670 вагонов угля, 730 цистерн с природным газом или 900 цистерн, груженных нефтью.
Сегодня ТВС производят в основном на заводах России, Франции, США и Японии.

Чтобы доставить топливо для АЭС в другие страны, ТВС запечатывают в длинные и широкие металлические трубы, из труб выкачивают воздух и специальными машинами доставляют на борта грузовых самолетов.

Весит ядерное топливо для АЭС запредельно много, т.к. уран – один из самых тяжелых металлов на планете. Его удельный вес в 2,5 раза больше, чем у стали.

Атомная электростанция: принцип работы

Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.

Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так:
После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.

Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.

Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.

Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.

Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.

Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.

Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?

Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.

Типы ядерных реакторов

То, как работает АЭС, зависит от того, как именно работает ее атомный реактор. Сегодня есть два основных типа реакторов, которые классифицируются по спектру нейронов:
Реактор на медленных нейтронах, его также называют тепловым.

Для его работы используется 235й уран, который проходит стадии обогащения, создания урановых таблеток и т.д. Сегодня реакторов на медленных нейтронах подавляющее большинство.
Реактор на быстрых нейтронах.

За этими реакторами будущее, т.к. работают они на уране-238, которого в природе пруд пруди и обогащать этот элемент не нужно. Минус таких реакторов только в очень больших затратах на проектирование, строительство и запуск. Сегодня реакторы на быстрых нейтронах работают только в России.

Теплоносителем в реакторах на быстрых нейтронах выступает ртуть, газ, натрий или свинец.

Реакторы на медленных нейтронах, которыми сегодня пользуются все АЭС мира, тоже бывают нескольких типов.

Организация МАГАТЭ (международное агентство по атомной энергетике) создало свою классификацию, которой пользуются в мировой атомной энергетике чаще всего. Так как принцип работы атомной станции во многом зависит от выбора теплоносителя и замедлителя, МАГАТЭ базировали свою классификацию на этих различиях.


С химической точки зрения оксид дейтерия идеальный замедлитель и теплоноситель, т.к. ее атомы наиболее эффективно взаимодействуют с нейтронами урана по сравнению с другими веществами. Попросту говоря, свою задачу тяжелая вода выполняет с минимальными потерями и максимальным результатом. Однако ее производство стоит денег, в то время как обычную «легкую» и привычную для нас воду использовать куда проще.

Несколько фактов об атомных реакторах…

Интересно, что один реактор АЭС строят не менее 3х лет!
Для постройки реактора необходимо оборудование, которое работает на электрическом токе в 210 кило Ампер, что в миллион раз превышает силу тока, которая способна убить человека.

Одна обечайка (элемент конструкции) ядерного реактора весит 150 тонн. В одном реакторе таких элементов 6.

Водо-водяной реактор

Как работает АЭС в целом, мы уже выяснили, чтобы все «разложить по полочкам» посмотрим, как работает наиболее популярный водо-водяной ядерный реактор.
Во всем мире сегодня используют водо-водяные реакторы поколения 3+. Они считаются самыми надежными и безопасными.

Все водо-водяные реакторы в мире за все годы их эксплуатации в сумме уже успели набрать более 1000 лет безаварийной работы и ни разу не давали серьезных отклонений.

Структура АЭС на водо-водяных реакторах, подразумевает, что между ТВЭЛами циркулирует дистиллированная вода, нагретая до 320 градусов. Чтобы не дать ей перейти в парообразное состояние ее держат под давлением в 160 атмосфер. Схема АЭС называет ее водой первого контура.

Нагретая вода попадает в парогенератор и отдает свое тепло воде второго контура, после чего снова «возвращается» в реактор. Внешне это выглядит так, что трубки воды первого контура соприкасаются с другими трубками – воды второго контура, они передают тепло друг другу, но воды не контактируют. Контактируют трубки.

Таким образом, исключена возможность попадания радиации в воду второго контура, которая будет далее участвовать в процессе добычи электричества.

Безопасность работы АЭС

Узнав принцип работы АЭС мы должны понимать как же устроена безопасность. Устройство АЭС сегодня требует повышенного внимания к правилам безопасности.
Затраты на безопасность АЭС составляют примерно 40% от общей стоимости самой станции.

В схему АЭС закладываются 4 физических барьера, которые препятствуют выходу радиоактивных веществ. Что должны делать эти барьеры? В нужный момент суметь прекратить ядерную реакцию, обеспечивать постоянный отвод тепла от активной зоны и самого реактора, предотвращать выход радионуклеидов за пределы контайнмента (гермозоны).

  • Первый барьер – прочность урановых таблеток. Важно, чтобы они не разрушались под воздействием высоких температур в ядерном реакторе. Во многом то, как работает атомная станция, зависит от того, как «испекли» таблетки из урана на начальной стадии изготовления. Если таблетки с урановым топливом запечь неверно, то реакции атомов урана в реакторе будут непредсказуемыми.
  • Второй барьер – герметичность ТВЭЛов. Циркониевые трубки должны быть плотно запечатаны, если герметичность будет нарушена, то в лучшем случае реактор будет поврежден и работа остановлена, в худшем – все взлетит на воздух.
  • Третий барьер – прочный стальной корпус реактор а, (та самая большая башня – гермозона) который «удерживает» в себе все радиоактивные процессы. Повредится корпус – радиация выйдет в атмосферу.
  • Четвертый барьер – стержни аварийной защиты. Над активной зоной на магниты подвешиваются стержни с замедлителями, которые могут за 2 секунды поглотить все нейтроны и остановить цепную реакцию.

Если, несмотря на устройство АЭС с множеством степеней защиты, охладить активную зону реактора в нужный момент не удастся, и температура топлива возрастет до 2600 градусов, то в дело вступает последняя надежда системы безопасности – так называемая ловушка расплава.

Дело в том, что при такой температуре дно корпуса реактора расплавится, и все остатки ядерного топлива и расплавленных конструкций стекут в специальный подвешенный над активной зоной реактора «стакан».

Ловушка расплава охлаждаема и огнеупорна. Она наполнена так называемым «жертвенным материалом», который постепенно останавливает цепную реакцию деления.

Таким образом, схема АЭС подразумевает несколько степеней защиты, которые практически полностью исключают любую возможность аварии.

В путь отправился энергоблок плавучей атомной электростанции. За скучным, казалось бы, энциклопедическим описанием скрывается неимоверная мощь.

Не вдаваясь в сухие цифры, один такой блок может легко обеспечить теплом, светом, и даже пресной водой город с население больше 100 тысяч человек. Для сравнения, на Чукотке, у берегов которой в итоге станция и пришвартуется, всего 50 тысяч жителей.

Огромное сооружение длиной 144 метра, это как полтора футбольных поля, 30 метров в высоту, примерно как стандартная девятиэтажка. Ближайшие дней 20 энгергоблок будут буксировать вокруг Скандинавии, в Мурманск, где пройдет второй этап подготовки. А конечный пункт назначения - Певек.

Так первый в истории плавучий атомный энергоблок провожали в путь длиною больше года - от Петербурга до далекого чукотского Певека. С родного причала взволнованные рабочие Балтийского завода почти два часа напряженно следили за тем, как их «Академик», окруженный транспортными буксирами, медленно отходит.

Со скоростью всего пять узлов, это около девяти километров в час, первая в мире плавучая атомная теплоэлектростанция покидает Петербург. Все 50 километров пути по Неве и Финскому заливу станцию провожать будут речные буксиры. Поздно вечером их сменят более габаритные морские буксиры. «Академик Ломоносов» выйдет в воды Балтийского моря.

Впереди больше двух тысяч морских миль. К новому порту буксирный караван пройдет через четыре моря. Вдоль берегов Эстонии, Дании, Финляндии, Швеции и Норвегии станция пройдет абсолютно пустой. Ядерное топливо загружать решено уже в Мурманске, лишь после станция продолжит путь на Чукотку. Соседние страны могут быть спокойны - ядерной угрозы их безопасности нет.

Павел Ипатов

Заместитель генерального директора концерна «Росэгергоатом», руководитель проекта по сооружению и эксплуатации плавучих атомных теплоэлектростанции

Это связано прежде всего с тем, что это первый энергоблок - вообще первый в мире, - и международных правил по транспортировке подобных объектов сегодня просто не существует. Сегодня транспортировка этого судна без ядерного топлива, это, на мой взгляд, наиболее правильное решение, во-первых, с точки зрения безопасности, и с точки зрения вообще добрососедского отношения с этими странами.

Проект, который уже вошел в мировую историю, «Росатом» вынашивал давно. Почти девять лет на Балтийском заводе в Петербурге кропотливо строили то, что до них еще никто не делал. Хотя пытались во многих странах. Китай собирался построить такие же плавучие станции лишь после 2020 года. Россия сделала раньше. И первенство в проектах энергоразвития страна уступать не собирается и дальше, о чем президенту еще в феврале доложил глава «Росатома».

Алексей Лихачев

Генеральный директор госкорпорации «Росатом»

Очень важно также отметить, что не только такие мощные станции, но и целый ряд источников небольшой и средней мощности находятся в разработке в госкорпорации. В этом году наш «первенец» - плавучая атомная станция «Академик Ломоносов» - начнет свою работу; мы планируем произвести физпуск. Все эти наработки, Владимир Владимирович, в нашей энергетической, что ли, атомной повестке дня позволяют нам сохранять международное лидерство. Несмотря на жесточайшую конкуренцию, мы строим сегодня за рубежом больше блоков, чем все остальные страны вместе взятые.

Еще на этапе строительства на Балтийском заводе регулярно встречали потенциальных покупателей из стран арабского мира и Индонезии. Такие плавучие теплоэлектростанции могут работать ведь и на опреснение воды. До 240 тысяч кубометров пресной воды в сутки. Но самый первый в мире плавучий энергоблок не для продажи за границу - станция станет источником тепла и электроэнергии для тысяч жителей Чукотки. Ее строили специально для самого северного города страны Певека. На землях вечной мерзлоты «Академик Ломоносов» заменит небольшую по мощности Билибинскую АЭС. Срок ее эксплуатации истекает через несколько лет.

Павел Ипатов

Заместитель генерального директора концерна «Росэгергоатом», руководитель проекта по сооружению и эксплуатации плавучей атомной теплоэлектростанции

Север, вообще, весь Север, он достаточно чувствителен к деятельности человека. Так вот, плавучий энергоблок хорош тем, что он пришел, свой срок отработал, и ушел. При этом он на окружающую среду не воздействует негативно, и после себя ни радиоактивных отходов, ни загрязнения, ничего подобного негативного не оставляет.

Длиной в почти полтора футбольных поля, высотой с десятиэтажный дом, мобильную станцию снабдили двумя ядерными реакторами той же серии, что уже давно успешно используют на российских подводных лодках и ледоколах. Энергетической мощности, как говорят эксперты, хватит на город с населением в 100 тысяч жителей. И это даже в два раза больше, чем сегодня живет на всей Чукотке.

Ожидается, что в порт Мурманска «Академик Ломоносов» зайдет через 18-20 дней. Там на берегу его уже будет ждать экипаж, чтобы сразу приступить к пусковым испытаниям. Летом следующего года плавучая атомная теплоэлектростанция отправится дальше на Чукотку.